WHT EQUERRE

POUR LES FORCES DE TRACTION

Gamme complète (différentes dimensions et possibilités d'utilisation avec et sans rondelle)

Application pour bois-ciment et bois-bois

Distance trou pour fixation dans ciment optimisée pour faciliter la pose sur chantier

Acier à haute résistance pour des forces de traction élevées

Essais expérimentaux effectués auprès du KIT (Karlsruher Institut für Technologie)

Fiche produit online (www.rothoblaas.com)

Grande résistance à la traction garantie par un ancrage de gros diamètre dans le ciment

Jonction idéale pour les édifices en bois dans une zone sismique

Utilisation aussi bien avec des clous annelés (Anker) **qu'avec des vis** spéciales

polyvalence d'utilisation aussi bien pour des édifices « à ossature» qu'à panneau massif multi-plis

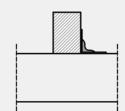
> Paquet complet: équerre, clous ou vis, barres filetées, résines chimiques et équipement disponibles sur catalogue

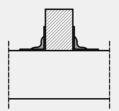
APPLICATIONS

Les valeurs de résistance dépendent de l'application sur chantier et du type de support. Les principales configurations sont :

Bois/Bois - Poutre/Poutre

Bois/Bois - Poutre/Pilier

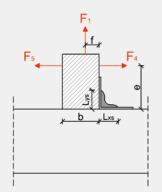

Bois/Ciment - Poutre/Poutre

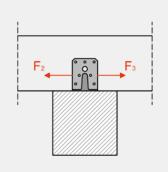


Bois/Ciment - Poutre/Pilier

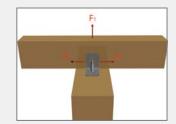
La jonction peut être effectuée avec une seule équerre ou avec 2 équerres disposées de manière symétrique.

FIXATIONS


JONCTION CÔTÉ BOIS	JONCTION CÔTÉ CIMENT
Clous annelés Ø 4,0 x L	Système d'ancrage à visser (SKR)
Vis spéciales Ø 5,0 x L	Barre filetée avec résine chimique
	Tasseau mécanique


Pour la typologie et la modalité de pose des fixations, voir les schémas en annexe

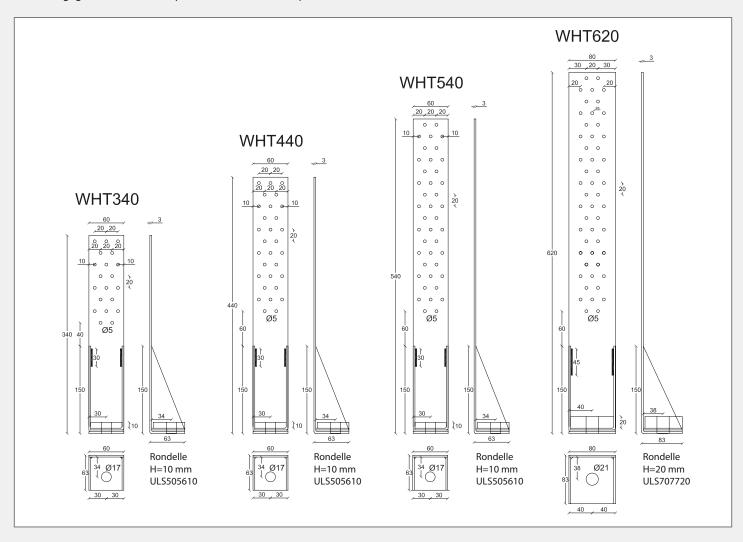
PRINCIPES GÉNÉRAUX DE CALCUL


Les valeurs caractéristiques de résistance R_k sont calculés selon EN1995:2008, ATE-10/0010 et ATE-09/0324.

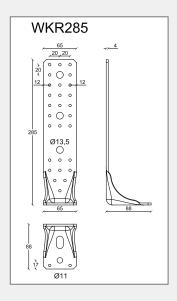
Les valeurs de projet R_d sont calculées comme suit : $R_d = \frac{-R_k \cdot k_{mod}}{\gamma_m}$

Dans le cas de contraintes combinées, la condition suivante doit se vérifier :

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 + \left(\frac{F_{5,d}}{R_{5,d}}\right)^2 \le 1$$


NOTE:

 F_2 et F_3 sont des forces contraires ; seule une des deux peut être posée différente de 0 kN. F_4 et F_5 sont des forces contraires ; seule une des deux peut être posée différente de 0 kN.


Les valeurs de calcul reportées ne sont valables que pour des éléments en bois ayant une masse volumique caractéristique $\rho_k \ge 350 \text{ kg/m}^3$. Pour $\rho_k < 350 \text{ kg/m}^3$, le valeurs de calcul sont multipliés pour le coefficient de réduction $K_{dens} = (\rho_k / 350)^2$.

DESSINS TECHNIQUES - WHT

Acier de qualité S 355 selon la norme EN 10025-2:2004 avec $f_{y,k} \ge 350 \text{ N/mm}^2$. Électrozingage FeZn 12c d'une epaisseur minimale de 12 μ m.

DESSINS TECHNIQUES - WKR

Acier de qualité S 235 JR selon la norme EN 10326:2004 avec $f_{y,k} \geq 235 \ N/mm^2.$ Galvanisé à chaud par une immersion en continu d'une épaisseur minimale de 55 μ m.

DONNÉES TECHNIQUES - JONCTION ÉLÉMENT VERTICAL SUR BOIS

	WHT - ENCLOUAGE I	PARTIEL	Résistance caractéristique à la traction							•	
	Fixation Trous Ø 5		Fixation Trous Ø 5 R _k côté bois R _k côté acier				•••	•			
TYP WHT	(conne	cteurs)	n _{conn}	R _{k, bois}	Rondelle	R _{k, acier}		•••	•••	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Clous Anker	Vis Spéciales	[pcs.]	[kN]	Rolluelle	[KN]		***	***		
340	Ø 4,0 x 40	ø 5,0 x 40	14	22,0		42,0	42.0	•••	***	• • •	•••
340	ø 4,0 x 60	ø 5,0 x 50	14	27,0	-		J :::	***	• • •		
440	Ø 4,0 x 40	ø 5,0 x 40	20 31,4 38,6		42.0	, <u> ; ; ; </u>	***	***	:		
440	Ø 4,0 x 60	ø 5,0 x 50		20	38,6	- 42,0	42,0	42,0		h d	
540	Ø 4,0 x 40	ø 5,0 x 40	26	40,8	-		42,0	111	1 1	[]	ł
240	Ø 4,0 x 60	ø 5,0 x 50	26	50,2		42,0			\Box	L	
620	Ø 4,0 x 40	ø 5,0 x 40	32	50,2		42,0	ø16	ø16	ø16	Ø	
020	ø 4,0 x 60	ø 5,0 x 50	32	61,8	_	42,0	WHT340	WHT440	WHT540	WH	

En utilisant 2 équerres TYP WHT pour une jonction simple, les résistances prévues redoublent.

	WHT - ENCLOUAGE I	Résistar	nce caracté	ristique à la	traction					
TYP WHT		Trous Ø 5		té bois	R _k côt	té ader				•••
ITPWHI	Clous Anker	Vis Spéciales	n _{conn} [pcs.]	R _{k, bois}	Rondelle	R _{k, acier}		-	• • •	-
240	Ø 4,0 x 40	Ø 5,0 x 40		31,4	-		ĺ		•••	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
340	ø 4,0 x 60	ø 5,0 x 50	20	38,6		42,0	42,0	***	:::	
440	ø 4,0 x 40	ø 5,0 x 40	30	47,1	* H	63.4	63,4		••• ••	•••
440	ø 4,0 x 60	ø 5,0 x 50	30	57,9	10 mm	03,4				lha ha ha
540	ø 4,0 x 40	ø 5,0 x 40	42	65,9		63,4	62.4			
340	ø 4,0 x 60	ø 5,0 x 50	42	81,1	10 mm	03,4				
620	ø 4,0 x 40	ø 5,0 x 40	52 81,6 ** H		85,2	1	ø16	ø16 ø16	ø16 ø16 ø16	
020	ø 4,0 x 60	ø 5,0 x 50	32	100,4	20 mm	03,2	ı	WHT340	WHT340 WHT440	WHT340 WHT440 WHT540

^{*} Rondelle ULS505610 ** Rondelle ULS707720

En accord avec l'ATE-10/0010, la résistance caractéristique côté bois est calculable comme produit entre le nombre de connecteurs insérés (n_{conn}) et la portée du connecteur lui-même:

$$R_{k,\,bois} = n_{conn}\!\cdot R_{k,conn}$$

où la portée du connecteur est égale aux valeurs reportées dans le tableau ci-contre. La résistance de projet R_d de la équerre WHT est déterminée comme la valeur minimale entre la résistance prévue des connecteurs côté bois et la résistance prévue de l'équerre côté acier. Les coefficients K_{mod} et γ_m sont à considérer en fonction de la norme utilisée pour le calcul.

Résistance connecteurs						
Clous Vis R _{k, conn}						
Ø 4,0 x 40	Ø 5,0 x 40	1,57 kN				
Ø 4,0 x 60	Ø 5,0 x 50	1,93 kN				

$$R_{\text{d,WHT}} = \text{min} \left\{ \begin{array}{l} \frac{R_{k,\text{bois}} \cdot k_{\text{mod}}}{\gamma_{\text{m, conn}}} \\ \frac{R_{k,\text{acier}}}{\gamma_{\text{m, acier}}} \end{array} \right.$$

WKR - RIVETAGE PARTIEL			Résistance caractéristique à traction		
	Fixation Trous Ø 5 (connecteurs)		Ri	k, WKR	
TYP WKR			n _{conn}	R _k , WKR	
	Clous Anker	Vis Spéciales	[pcs.]	[kN]	
285	Ø 4,0 x 40	ø 5,0 x 40	9	141	
	ø 4,0 x 60	ø 5,0 x 50	9	14,1	

En utilisant 2 équerres TYP WKR pour une jonction simple, les résistances prévues redoublent.

La résistance de projet Rd du WKR est calculée comme suit :

$$R_{\text{d,WKR}} = \frac{R_{\text{k,WKR}} \cdot k_{\text{mod}}}{\gamma_{\text{m}}}$$

DONNÉES TECHNIQUES - JONCTION BASE EN CIMENT

	Ţ				
	Barre Filetée	1 h _{eff}	N _{k, extrac}		
Ø[mm]	Classe acier	[mm]	[kN]	γm	h _{eff}
10	5.8	90	22,6	1,8	[J] h
16	5.8	160	78,0	1,5	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
20	5.8	200	122,0	1,5	

Le système d'ancrage avec résine vinylester est utilisable exclusivement sur ciment non fissuré.

Valeurs caractéristiques de résistance à extraction conformes avec l'ATE-09/0078. Les valeurs indiquées font référence à un seul système sans effet d'entraxe et aux distances depuis le bord sur la surface du ciment non fissuré, sec et à température standard pour les profondeurs indiquées dans le tableau. Pour des conditions différentes, les valeurs sont à établir en fonction de ce qui est indiqué dans la « méthode de conception A » de l'ATEG 001 pour les systèmes d'ancrage dans le ciment.

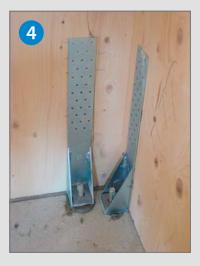

Paramètres d'installation							
2 d 3 d ₀ 4 h _{min} 5 T							
[mm]	[mm]	[mm]	[Nm]				
10	12	h _{eff} + 30	20				
16	18	h _{eff} + 30	80				
20	24	$h_{eff} + 2 d_0$	120				

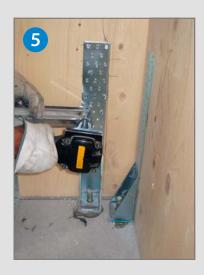
- 1 heff: profondeur effective d'ancrage
- d : diamètre barre filetée
- 3 d₀ : diamètre nominal de le pointe pour le trou
- h : épaisseur du support dans le ciment
- 5 T : couple de serrage

La résistance de projet $N_{\text{d,extract}}\,\text{se}$ calcule comme suit :

$$N_{d,extract} = \frac{N_{k,extract}}{v_m}$$

PHASE DE MONTAGE - SUPPORT EN BÉTON ARMÉ


Perçage du béton armé et nettoyage du trou


Injection de la résine chimique vinylester dans le trou

Positionnement de la barre filetée

Pose de l'équerre WHT avec la rondelle correspondante (si prévue)

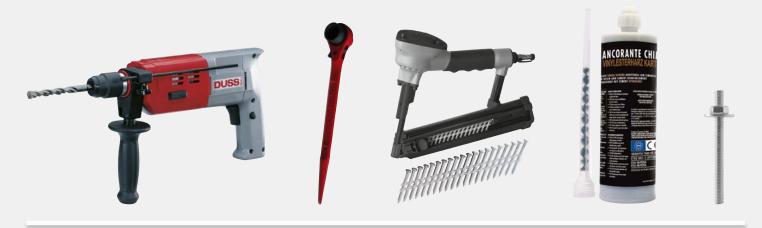
Enclouage de la équerre

Positionnement de l'écrou à l'aide d'un couple de serrage approprié

PHASE DE MONTAGE - SUPPORT EN BOIS

Pose de la équerre WKR et fixation aux murs à l'aide des vis spéciales

Fixation au plancher en bois à l'aide de vis entièrement fileté VGS (vous pouvez également utiliser un boulon traversant)


APPLICATIONS - PLAQUES ANGULAIRES POSÉES SUR CHANTIER

Positionnement typique des plaques angulaires sur support en béton armé pour un édifice en bois

ACCESSOIRES

